To be clear, Benjamin et al., did state that their recommendations were specifically for "claims of discovery of new effects" (p. 5). But imagine a scenario where 0.005 is the new 0.05, for all research.
What happens to my 80% power sample sizes if I switch to the new alpha level? How much larger will the sample need to be? For one-sided tests of Pearson's r to 2dps, the answers appear in the table below.
In brief, for correlational research, switching from .05 to 0.005 will require you multiply your sample size by around 1.82 (that's the median figure). Stated differently, that's an 82% increase in participants.
r
|
.05
|
.005
|
Increase in N
|
Multiply N by (2dp)
|
.01
|
61824
|
116785
|
54961
|
1.89
|
.02
|
15455
|
29193
|
13738
|
1.89
|
.03
|
6868
|
12972
|
6104
|
1.89
|
.04
|
3862
|
7295
|
3433
|
1.89
|
.05
|
2471
|
4667
|
2196
|
1.89
|
.06
|
1716
|
3239
|
1523
|
1.89
|
.07
|
1260
|
2379
|
1119
|
1.89
|
.08
|
964
|
1820
|
856
|
1.89
|
.09
|
762
|
1437
|
675
|
1.89
|
.10
|
617
|
1163
|
546
|
1.88
|
.11
|
509
|
960
|
451
|
1.89
|
.12
|
428
|
806
|
378
|
1.88
|
.13
|
364
|
686
|
322
|
1.88
|
.14
|
314
|
591
|
277
|
1.88
|
.15
|
273
|
514
|
241
|
1.88
|
.16
|
240
|
451
|
211
|
1.88
|
.17
|
212
|
399
|
187
|
1.88
|
.18
|
189
|
356
|
167
|
1.88
|
.19
|
170
|
319
|
149
|
1.88
|
.20
|
153
|
287
|
134
|
1.88
|
.21
|
139
|
260
|
121
|
1.87
|
.22
|
126
|
236
|
110
|
1.87
|
.23
|
115
|
216
|
101
|
1.88
|
.24
|
106
|
198
|
92
|
1.87
|
.25
|
97
|
182
|
85
|
1.88
|
.26
|
90
|
168
|
78
|
1.87
|
.27
|
83
|
155
|
72
|
1.87
|
.28
|
77
|
144
|
67
|
1.87
|
.29
|
72
|
134
|
62
|
1.86
|
.30
|
67
|
125
|
58
|
1.87
|
.31
|
63
|
117
|
54
|
1.86
|
.32
|
59
|
109
|
50
|
1.85
|
.33
|
55
|
102
|
47
|
1.85
|
.34
|
52
|
96
|
44
|
1.85
|
.35
|
49
|
90
|
41
|
1.84
|
.36
|
46
|
85
|
39
|
1.85
|
.37
|
44
|
80
|
36
|
1.82
|
.38
|
41
|
76
|
35
|
1.85
|
.39
|
39
|
72
|
33
|
1.85
|
.40
|
37
|
67
|
30
|
1.81
|
.41
|
35
|
65
|
30
|
1.86
|
.42
|
33
|
61
|
28
|
1.85
|
.43
|
32
|
58
|
26
|
1.81
|
.44
|
30
|
55
|
25
|
1.83
|
.45
|
29
|
53
|
24
|
1.83
|
.46
|
28
|
50
|
22
|
1.79
|
.47
|
26
|
48
|
22
|
1.85
|
.48
|
25
|
46
|
21
|
1.84
|
.49
|
24
|
44
|
20
|
1.83
|
.50
|
23
|
42
|
19
|
1.83
|
.51
|
22
|
40
|
18
|
1.82
|
.52
|
21
|
38
|
17
|
1.81
|
.53
|
20
|
37
|
17
|
1.85
|
.54
|
20
|
35
|
15
|
1.75
|
.55
|
19
|
34
|
15
|
1.79
|
.56
|
18
|
32
|
14
|
1.78
|
.57
|
17
|
31
|
14
|
1.82
|
.58
|
17
|
30
|
13
|
1.76
|
.59
|
16
|
29
|
13
|
1.81
|
.60
|
16
|
27
|
11
|
1.69
|
.61
|
15
|
26
|
11
|
1.73
|
.62
|
14
|
25
|
11
|
1.79
|
.63
|
14
|
24
|
10
|
1.71
|
.64
|
13
|
23
|
10
|
1.77
|
.65
|
13
|
23
|
10
|
1.77
|
.66
|
13
|
22
|
9
|
1.69
|
.67
|
12
|
21
|
9
|
1.75
|
.68
|
12
|
20
|
8
|
1.67
|
.69
|
11
|
19
|
8
|
1.73
|
.70
|
11
|
19
|
8
|
1.73
|
.71
|
11
|
18
|
7
|
1.64
|
.72
|
10
|
17
|
7
|
1.70
|
.73
|
10
|
17
|
7
|
1.70
|
.74
|
10
|
16
|
6
|
1.60
|
.75
|
9
|
16
|
7
|
1.78
|
.76
|
9
|
15
|
6
|
1.67
|
.77
|
9
|
14
|
5
|
1.56
|
.78
|
9
|
14
|
5
|
1.56
|
.79
|
8
|
13
|
5
|
1.63
|
.80
|
8
|
13
|
5
|
1.63
|
.81
|
8
|
12
|
4
|
1.50
|
.82
|
8
|
12
|
4
|
1.50
|
.83
|
7
|
12
|
5
|
1.71
|
.84
|
7
|
11
|
4
|
1.57
|
.85
|
7
|
11
|
4
|
1.57
|
.86
|
7
|
10
|
3
|
1.43
|
.87
|
6
|
10
|
4
|
1.67
|
.88
|
6
|
10
|
4
|
1.67
|
.89
|
6
|
9
|
3
|
1.50
|
.90
|
6
|
9
|
3
|
1.50
|
.91
|
6
|
8
|
2
|
1.33
|
.92
|
6
|
8
|
2
|
1.33
|
.93
|
5
|
8
|
3
|
1.60
|
.94
|
5
|
7
|
2
|
1.40
|
.95
|
5
|
7
|
2
|
1.40
|
.96
|
5
|
7
|
2
|
1.40
|
.97
|
5
|
6
|
1
|
1.20
|
.98
|
—
|
6
|
||
.99
|
—
|
5
|
Note. Sample size information computed using R package pwr, using variations on the following code
pwr.r.test(n = , r = , sig.level = 0.05, power = .80, alternative = "greater")