Sunday, 1 October 2017

80% power for p < .05 and p < .005

In the last few months there has been a new round of debate on p values. Redefine statistical significance by Benjamin et al. (2017) kicked things off. In that article the authors argued that "for research communities that continue to rely on null hypothesis significance testing, reducing the P-value threshold for claims of new discoveries to 0.005 is an actionable step that will immediately improve reproducibility" (p. 11). Fisher's arbitrary choice of 0.05 is no longer adequate.

To be clear, Benjamin et al., did state that their recommendations were specifically for "claims of discovery of new effects" (p. 5). But imagine a scenario where 0.005 is the new 0.05, for all research.

What happens to my 80% power sample sizes if I switch to the new alpha level? How much larger will the sample need to be? For one-sided tests of Pearson's r to 2dps, the answers appear in the table below.

In brief, for correlational research, switching from .05 to 0.005 will require you multiply your sample size by around 1.82 (that's the median figure). Stated differently, that's an 82% increase in participants.

r
.05
.005
Increase in N
Multiply N by (2dp)
.01
61824
116785
54961
1.89
.02
15455
29193
13738
1.89
.03
6868
12972
6104
1.89
.04
3862
7295
3433
1.89
.05
2471
4667
2196
1.89
.06
1716
3239
1523
1.89
.07
1260
2379
1119
1.89
.08
964
1820
856
1.89
.09
762
1437
675
1.89





.10
617
1163
546
1.88
.11
509
960
451
1.89
.12
428
806
378
1.88
.13
364
686
322
1.88
.14
314
591
277
1.88
.15
273
514
241
1.88
.16
240
451
211
1.88
.17
212
399
187
1.88
.18
189
356
167
1.88
.19
170
319
149
1.88





.20
153
287
134
1.88
.21
139
260
121
1.87
.22
126
236
110
1.87
.23
115
216
101
1.88
.24
106
198
92
1.87
.25
97
182
85
1.88
.26
90
168
78
1.87
.27
83
155
72
1.87
.28
77
144
67
1.87
.29
72
134
62
1.86





.30
67
125
58
1.87
.31
63
117
54
1.86
.32
59
109
50
1.85
.33
55
102
47
1.85
.34
52
96
44
1.85
.35
49
90
41
1.84
.36
46
85
39
1.85
.37
44
80
36
1.82
.38
41
76
35
1.85
.39
39
72
33
1.85





.40
37
67
30
1.81
.41
35
65
30
1.86
.42
33
61
28
1.85
.43
32
58
26
1.81
.44
30
55
25
1.83
.45
29
53
24
1.83
.46
28
50
22
1.79
.47
26
48
22
1.85
.48
25
46
21
1.84
.49
24
44
20
1.83





.50
23
42
19
1.83
.51
22
40
18
1.82
.52
21
38
17
1.81
.53
20
37
17
1.85
.54
20
35
15
1.75
.55
19
34
15
1.79
.56
18
32
14
1.78
.57
17
31
14
1.82
.58
17
30
13
1.76
.59
16
29
13
1.81





.60
16
27
11
1.69
.61
15
26
11
1.73
.62
14
25
11
1.79
.63
14
24
10
1.71
.64
13
23
10
1.77
.65
13
23
10
1.77
.66
13
22
9
1.69
.67
12
21
9
1.75
.68
12
20
8
1.67
.69
11
19
8
1.73





.70
11
19
8
1.73
.71
11
18
7
1.64
.72
10
17
7
1.70
.73
10
17
7
1.70
.74
10
16
6
1.60
.75
9
16
7
1.78
.76
9
15
6
1.67
.77
9
14
5
1.56
.78
9
14
5
1.56
.79
8
13
5
1.63





.80
8
13
5
1.63
.81
8
12
4
1.50
.82
8
12
4
1.50
.83
7
12
5
1.71
.84
7
11
4
1.57
.85
7
11
4
1.57
.86
7
10
3
1.43
.87
6
10
4
1.67
.88
6
10
4
1.67
.89
6
9
3
1.50





.90
6
9
3
1.50
.91
6
8
2
1.33
.92
6
8
2
1.33
.93
5
8
3
1.60
.94
5
7
2
1.40
.95
5
7
2
1.40
.96
5
7
2
1.40
.97
5
6
1
1.20
.98
6


.99
5



Note. Sample size information computed using R package pwr, using variations on the following code

pwr.r.test(n = , r = , sig.level = 0.05, power = .80, alternative = "greater")